Kernelized Rényi distance for subset selection and similarity scoring
نویسندگان
چکیده
Rényi entropy refers to a generalized class of entropies that have been used in several applications. In this work, we derive a non-parametric distance between distributions based on the quadratic Rényi entropy. The distributions are estimated via Parzen density estimates. The quadratic complexity of the distance evaluation is mitigated with GPUbased parallelization. This results in an efficiently evaluated non-parametric entropic distance the kernelized Rényi distance or the KRD. We adapt the KRD into a similarity measure and show its application to speaker recognition. We further extend KRD to measure dissimilarities between distributions and illustrate its applications to statistical subset selection and dictionary learning for object recognition and pose estimation.
منابع مشابه
Kernelized Rényi distance for speaker recognition
Speaker recognition systems classify a test signal as a speaker or an imposter by evaluating a matching score between input and reference signals. We propose a new information theoretic approach for computation of the matching score using the Rényi entropy. The proposed entropic distance, the Kernelized Rényi distance (KRD), is formulated in a non-parametric way and the resulting measure is eff...
متن کاملIFSB-ReliefF: A New Instance and Feature Selection Algorithm Based on ReliefF
Increasing the use of Internet and some phenomena such as sensor networks has led to an unnecessary increasing the volume of information. Though it has many benefits, it causes problems such as storage space requirements and better processors, as well as data refinement to remove unnecessary data. Data reduction methods provide ways to select useful data from a large amount of duplicate, incomp...
متن کاملA New Hybrid Feature Subset Selection Algorithm for the Analysis of Ovarian Cancer Data Using Laser Mass Spectrum
Introduction: Amajor problem in the treatment of cancer is the lack of an appropriate method for the early diagnosis of the disease. The chemical reaction within an organ may be reflected in the form of proteomic patterns in the serum, sputum, or urine. Laser mass spectrometry is a valuable tool for extracting the proteomic patterns from biological samples. A major challenge in extracting such ...
متن کاملA New Kernelized Fuzzy C-Means Clustering Algorithm with Enhanced Performance
Recently Kernelized Fuzzy C-Means clustering technique where a kernel-induced distance function is used as a similarity measure instead of a Euclidean distance which is used in the conventional Fuzzy C-Means clustering technique, has earned popularity among research community. Like the conventional Fuzzy C-Means clustering technique this technique also suffers from inconsistency in its performa...
متن کاملTowards Finding a New Kernelized Fuzzy C-means Clustering Algorithm
Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead of a Euclidean distance which is used in the conventional Fuzzy C-Means clustering technique, has earned popularity among research community. Like th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011